

Measurement of Water Volume Fraction in Oil-water Upward Flow by Using Microwave Cylindrical Resonant Cavity

Chao Yuan

Georgios Dimitrakis

Buddhika Hewakandamby

CONTENT

• 1. INTRODUCTION

• 2. LABORATORY SETUP

• 3. RESULTS AND DISCUSSION

• 4. CONCLUSION

OIL-WATER TWO-PHASE FLOW

(Katsutaka O)

Gas phase Gas-liquid Gas-solid two-phase two-phase Gas-liquidsolid Liquid-liquid three-phase two-phase Liquid-solid Liquid Solid two-phase phase phase

Water-dominated flow

Oil-dominated flow

0 $^{\circ}$ 0 0 0 0 **°** 0 0 \bigcirc 0 0 0 0 0 0 0 0 \bigcirc 0 000 0 0 0 0 \odot ø 0 0 0 0 0 0 o/w F Do/w Dw/o w/o w/o F o/w (Abduvayt P et al., 2004)

A resonant cavity is a volume enclosed by metal walls that supports an electromagnetic oscillation.

Microwave resonant cavity

TE mode:
$$f_{nml} = \frac{1}{2\pi\sqrt{\mu\varepsilon}} \sqrt{\left(\frac{p'_{nm}}{a}\right)^2 + \left(\frac{l\pi}{d}\right)^2}$$

TM mode:
$$f_{nml} = \frac{1}{2\pi\sqrt{\mu\varepsilon}}\sqrt{\left(\frac{p_{nm}}{a}\right)^2 + \left(\frac{l\pi}{d}\right)^2}$$

Where *l*, *m* and *n* are the number of variations in the standing wave pattern in the cavity directions, μ and ε are the permeability and permittivity of the material, a and d is the internal radius and height of cylindrical resonant cavity, p_{nm} is the mth root of O the Bessel function of nth order, p'_{nm} is the mth root of the derivative of Bessel function of nth order.

 $S_{21}=b_2/a_1=Output \text{ power/ Input power}$

Insert Loss

Liquid-liquid flow facility

TEST MATRIX

Oil flow rate (L/min)	Water Volume Fraction
75	0, 10.51%, 12.11%, 14.03%, 15.87%, 18.06%, 19.55%
100	0, 7.85%, 9.60%, 12.82%, 13.91%, 15.39%, 17.30%, 20.07%
125	0, 5.99%, 8.41%, 10.18%, 12.49%, 14.01%, 17.28%, 19.16%

0

U_{oil}=75 L/min

U_{oil}=100 L/min

U_{oil}=125 L/min

Relationship between $\boldsymbol{\eta}$ and water-cut

Relative shift of resonant frequency

Water-cut

$$TM_{010}: \theta = -65.805\eta^2 + 7.8178\eta - 0.002$$

$$TM_{110}: \theta = -1127.6\eta^2 + 32.702\eta + 0.008$$

 $TM_{010}: \theta = -65.805\eta^2 + 7.8178\eta - 0.002$

Relative error: -3.9% to 4.32%

 $TM_{110}: \theta = -1127.6\eta^2 + 32.702\eta + 0.008$

Relative error: -2.58% to 4.44%

Conclusion

- Resonant frequency was sensitive to the variation of water cut with very good repeatability.
- Measurement of water content in the continuous flow was feasible and robust and was not

affected by the changing flow rates.

• The relative error between the measured and the predicted water volume fraction in oil

ranged from -3.9% to 4.32% and -2.58% to 4.44% for TM_{010} and TM_{110} mode respectively.

Thank you for listening

Obrigado por ouvir

谢谢聆听

0

0

0

